Linear transformations and matrices
What to learn
- What is the Linear Transformation
Description
- Transformation
-
Take some input vector to output vector - = input vector moving over output vector - We will treat Only Linear Transformation In Linear Algebra - Special case of Transformation - Lines remain lines - Origin remains fixed - 2d Linear Transformation is fully discribed by two basis vectors - Always same linear combination about two basis vectors - And if we can explain 2d Linear Transformation using Matrix, and we can find out where a specific vector will move. - Example
If we make 2d linear transformation that move i hat to [3,2]^T and j hat to [2,1]^T. and wonder where [5,7]^T will move. $$\vec{i} = \begin{bmatrix}1\\ 0\end{bmatrix},\vec{j} = \begin{bmatrix}0\\ 1\end{bmatrix} \rightarrow \vec{i} = \begin{bmatrix}3\\ 2\end{bmatrix},\vec{j} = \begin{bmatrix}2\\ 1\end{bmatrix}$$ $$5 * \begin{bmatrix}3\\ 2\end{bmatrix} + 7 \begin{bmatrix}2\\ 1\end{bmatrix} = \begin{bmatrix}29\\ 17\end{bmatrix}$$ [29,17]^T will be the answer. Another way, we can make matrix using i hat and j hat $$\begin{bmatrix}3\\ 2\end{bmatrix}\begin{bmatrix}2\\ 1\end{bmatrix}\rightarrow \begin{bmatrix}3 & 2\\ 2 & 1\end{bmatrix}$$ Then we can get result using matrix calculation. $$\begin{bmatrix}3 & 2\\ 2 & 1\end{bmatrix}\begin{bmatrix}5\\ 7\end{bmatrix} = \begin{bmatrix}29\\ 17\end{bmatrix}$$ This way, we can get same result. - If matrix is compounded of Linearly dependent columns, then it makes all vectors move to the vectors' span. ## Next Step
-
- Matrix multiplication as composition
References
- https://www.youtube.com/watch?v=kYB8IZa5AuE&list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab&index=3