- How to do Three dimensional Matrix multiplication ## Description
- We already know multipling 2d matrix.
- Three-dimensional linear transformation applies the same principle.
- basis vector
- i hat
- j hat
- k hat
$$\begin{bmatrix}a & b & c\\ d & e & f\\ g & h & i\end{bmatrix}\begin{bmatrix}
j & k & l\\
m & n & o\\
p & q & r
\end{bmatrix}$$
- [j m p]^T is that transformed i hat laned vector. and we want to know [j m p]^T will go.
$$j\begin{bmatrix}
a \\ d\\ g
\end{bmatrix} + m\begin{bmatrix}
b \\ e\\ h
\end{bmatrix} + p\begin{bmatrix}
c \\ f\\ i
\end{bmatrix}$$
- we can do iteratively to j hat and k hat, and get matrix multiplication result.
$$\begin{bmatrix}aj+bm+cp & ak+bn+cq & al+bo+cr\\ dj+em+fp & dk+en+fq & dl+eo+fr\\ gj+hm+ip & gk+hn+iq & gl+ho+ir\end{bmatrix}$$