The determinant

What to learn

  • what is the determinant?

    Description

    • 2d determinant make us estimate transformed area of region.
      • example
        1. \[det\left ( \begin{bmatrix}0.0 & 2.0\\ -1.5 & 1.0\end{bmatrix} \right ) = 3.0\]
          • This transformation increases the area of A region by a factor of three.
        2. \[det\left ( \begin{bmatrix}0.5 & 0.5\\ -0.5 & 0.5\end{bmatrix} \right ) = 0.5\]
          • This transformation squishes down all areas by a factor of 1/2
        3. \[det\left ( \begin{bmatrix}4 & 2\\ 2 & 1\end{bmatrix} \right ) = 0\]
          • This transformation squishes all of space onto a line or onto a single point.
    • Determinant can get negative number.
      • Negative determinant invert the orientation space
      • Originally j hat is left side of i hat. but inverted by transformation that has nagative determinant, then j hat is right side of i hat. → Orientation space is inverted.
    • If we draw graph that shows determinant changes from positive to negative, space will be squished, then will be line, then will be flipped.
    • Determinant formular is ad-bc. we can get this formular using vector area diagram.
  • In three dimension, this idea is maintained.
    • Determinant informs the volume of basis vectors and if it is zero, then it means column vectors must be linear dependent.
    • We can define basis direction by right hand rule.
      • index finger : i hat
      • midde finger : j hat
      • thumb : k hat
    • If Determinant is smaller than zero, we have to change right hand rule to using left hand(Orientation flipped)
    \[det\left ( \begin{bmatrix}a & b &c\\ d & e &f \\ g&h&i\end{bmatrix} \right ) = a \cdot det\left ( \begin{bmatrix}e & f\\ h & i\end{bmatrix} \right ) - b\cdot det\left ( \begin{bmatrix}d & f\\ g & i\end{bmatrix} \right ) + c\cdot det\left ( \begin{bmatrix}d & e\\ g & h\end{bmatrix} \right )\]

Next Step