Cramer’s rule, explained geometrically
What to learn
- Understand Cramer’s rule by geometrically
Description
- Gaussian elimination is always fast. But understanding cramer’s rule geometrically will help to stretch out our linear algebra skill.
-
About linear transformation \(T\),
\[\begin{bmatrix} x \\ y \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \end{bmatrix} \neq T\left ( \begin{bmatrix} x \\ y \end{bmatrix} \right) \cdot T \left ( \begin{bmatrix} 1 \\ 0 \end{bmatrix}\right)\]But, if \(T\) is orthonormal(orthogonal and unit), then
\[\begin{bmatrix} x \\ y \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \end{bmatrix} = T\left ( \begin{bmatrix} x \\ y \end{bmatrix} \right) \cdot T \left ( \begin{bmatrix} 1 \\ 0 \end{bmatrix}\right)\]and, Any orthonormal linear transformation \(A\),
\[\begin{bmatrix} a & b \\c&d \end{bmatrix} \begin{bmatrix} x\\y \end{bmatrix} = \begin{bmatrix} e\\f \end{bmatrix}\]we can find misterious vector \(\vec{v}\) by inner dot
\[x = \begin{bmatrix} e\\f \end{bmatrix}\begin{bmatrix} a\\b \end{bmatrix}, y = \begin{bmatrix} e\\f \end{bmatrix}\begin{bmatrix} b\\d \end{bmatrix}\]Because, basis of transformed \(\vec{x}\) is same as the result of inner dot \(\begin{bmatrix} e\\f \end{bmatrix}\) with new basis.
-
Yellow area is 1 * y
Then, after transformated, we can calculate area of yellow area transformed by \(A\) is \(det(A)y\).
- Because, it is linear transformation. \(1 \times y\) stretch out \(det(A) \times 1 \times y\)
So, \(y = \frac{Area}{det(A)}\), Area is (landing vector \(\vec{v}\)) \(\cdot\)(transformed i hat). We can describe like this.
\[y = \frac{Area}{det(A)} = \frac{\left( \begin{bmatrix} a & v_1 \\c&v_2 \end{bmatrix}\right )}{\left ( \begin{bmatrix} a & b \\c&d \end{bmatrix}\right )}\]And we can get x same as y.
\[x = \frac{Area}{det(A)} = \frac{\left( \begin{bmatrix} v_1 & b \\v_2&d \end{bmatrix}\right )}{\left ( \begin{bmatrix} a & b \\c&d \end{bmatrix}\right )}\]
Next Step
- Think about 3d Cramer’s rule
- Change of basis
References
- https://www.youtube.com/watch?v=jBsC34PxzoM&list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab&index=12