Change of basis
What to learn
- Perspective of basis and vector
Description
- If we want to see vector in transformed coordinates by \(A\) by transformed perspective, we have to calculate the inverse of \(A\).
- (example)
- In Transformed coordinates by \(A = \begin{bmatrix}
2 & -1 \\ 1 & 1
\end{bmatrix}\), we can find vector \(\vec{v} = \begin{bmatrix}
-1 & 2
\end{bmatrix}^T\) in transformed perspective. Vector \(\vec{v}\) that is made by transformed \(-\vec{i} + 2\vec{j}\). So, doing \(A\cdot \vec{v}\) , we can get \(\vec{w} = A\cdot \vec{v} = \begin{bmatrix}
-4 & 1
\end{bmatrix}\) in normal perspective.
- In transformed coordinates by \(A = \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix}\), if someone see our vector \(\vec{v} = \begin{bmatrix} 3 & 2 \end{bmatrix}^T\), then \(A^{-1}v\) vector is needed.
- In Transformed coordinates by \(A = \begin{bmatrix}
2 & -1 \\ 1 & 1
\end{bmatrix}\), we can find vector \(\vec{v} = \begin{bmatrix}
-1 & 2
\end{bmatrix}^T\) in transformed perspective. Vector \(\vec{v}\) that is made by transformed \(-\vec{i} + 2\vec{j}\). So, doing \(A\cdot \vec{v}\) , we can get \(\vec{w} = A\cdot \vec{v} = \begin{bmatrix}
-4 & 1
\end{bmatrix}\) in normal perspective.
- (example)
- How can we do another transformation in transformed coordinates by \(A = \begin{bmatrix}
a & b \\ c & d
\end{bmatrix}\)?
-
Get transformed vector in normal perspective.
\[\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}\] -
apply transformation \(B = \begin{bmatrix} e & f \\ g & h \end{bmatrix}\)
\[\begin{bmatrix} e & f \\ g & h \end{bmatrix}\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}\] -
Inner dot with inverse of A makes it to transformed coordinates.
\[\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1}\begin{bmatrix} e & f \\ g & h \end{bmatrix}\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}\]
-
Next Step
- Eigenvectors and eigenvalues
References
- https://www.youtube.com/watch?v=P2LTAUO1TdA&list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab&index=13